Главная Услуги Работы Персона Юзабилити анализы
IMG тел. +7(98I) 7608865
Методы построения семантического ядра




ПОИСК по сайту


    Полный список статей
/ Методы построения семантического ядра / Версия для печати / translit / абракадабра :-)


<-предыдущая следующая ->

 
  google.com bobrdobr.ru del.icio.us technorati.com linkstore.ru news2.ru rumarkz.ru memori.ru moemesto.ru smi2.ru twitter.com Яндекс закладки text20.ru RuSpace RuSpace toodoo

«Семь раз отмерь, один раз отрежь» Русская народная мудрость

Прежде чем продвигать сайт, мы должны определить какие страницы и по каким запросам мы будем продвигать. В этой статье мы рассмотрим два диаметрально противоположных подхода к составлению семантического ядра.

С каждым годом растет конкуренция по коммерческим запросам. Поэтому все более популярным становиться продвижение по огромному числу низко- и среднечастотных запросов.

Если еще года два назад клиенты интересовались исключительно позициями сайта, то теперь же они оценивают работу оптимизатора в основном по целевому трафику. В СЧ и НЧ запросах трафика в разы больше, чем в ВЧ. В этом можно легко убедиться, набрав любой ВЧ в WordStat с кавычками и без. Например, показов «ноутбуки в Москве» 13000, а показов «"ноутбуки в Москве"» (без уточняющих слов) всего 369.

Но имея множество запросов, мы получаем проблемы с разросшимся семантическим ядром. Если года два-три назад СЯ состояли максимум из нескольких десятков запросов, то теперь же в них входят сотни или даже тысячи запросов.

Раньше для каждого запроса благодаря специальным программам (например, Yazzle) можно было посмотреть обратные ссылки конкурентов и достаточно точно определить их бюджеты. Сейчас такое практически невозможно, поскольку требуется слишком много машинного времени на каждый запрос. Да и применимо это к ВЧ запросам, которые продвигаются, в основном, через покупку ссылок, а не через внутренние факторы.

Несмотря на все это, большинство оптимизаторов все еще используют традиционный подход к составлению семантического ядра.

Традиционный подход

Этим методом мы составляли СЯ лет пять назад. Большинство оптимизаторов и сейчас использует этот подход. Со временем подход, конечно, немного менялся, но суть оставалась прежней:

· Составляем список запросов.

· Оцениваем конкуренцию.

· Отсеиваем часть запросов, которые имеют неоправданно высокую конкуренцию.

· Продвигаем запросы пропорционально нашей оценке конкуренции и/или их частотности.

Как я уже говорил, сейчас конкуренцию мы не можем адекватно посчитать. Поэтому мы все чаще продвигаем запросы пропорционально их частотности. Однако, с частотностью у нас тоже масса проблем. Статистика Wordstat отображает число показов страниц, а не число запросов. Другими словами, если пользователь набрал запрос и перешел на вторую страницу выдачи, то это уже 2 показа.

Посчитать число запросов в Яндексе можно, посмотрев статистику Рамблера, в которой отображается и число показов, и число запросов. Но глубина просмотра выдачи (число показов на один запрос) зависит от релевантности выдачи, поэтому этот показатель у Рамблера мало что может сказать об этом же показателе у Яндекса. К тому же, Рамблер - мертвая поисковая система, в которой несколько случайных пользователей могут создать статистическую погрешность.

Оптимизаторы, отслеживая позиции сайтов, вносят значительные погрешности в данные WordStat. Образуется большое число запросов-пустышек, которые интересуют только оптимизаторов и их программы для мониторинга позиций. Часть таких запросов можно отфильтровать разнообразными способами, но полностью удалить результаты SEO-прессинга мы не можем.

Думаю, ни для кого не секрет, что выдача по запросам «ноутбук» и «ноутбуки» разная. Поэтому нам нужно определить все словоформы, в которых вводится пользователями запрос, и продвигать сайты по ним, пропорционально числу запросов. В WordStat мы можем использовать оператор «!» и определить частотность словоформ. Однако, это, опять же, требует много машинного или человеческого времени, и здесь SEO-прессинг вносит еще большие погрешности.

Выдача же зависит не только от словоформы, но и от порядка слов и знаков препинания в запросе. Например, выдача для любого из этих 8-ми запросов разная:

«санкт-петербург ноутбуки»

«санкт-петербург, ноутбуки»

«ноутбуки санкт-петербург»

«ноутбуки, санкт-петербург»

«санкт петербург ноутбуки»

«санкт петербург, ноутбуки»

«ноутбуки санкт петербург»

«ноутбуки, санкт петербург»

Но для WordStat это один и тот же запрос. Нет источника, с помощью которого можно определить частотность этих запросов. Однако, используя поисковые подсказки, можно отсеять часть запросов с неправильным порядком слов, правда, количественную оценку частотности получить невозможно. Также мы никак не сможем получить информацию по знакам препинания.

Предположим, что для всех запросов и их вариаций, нам все-таки удалось абсолютно точно рассчитать число показов. Сможем ли мы точно определить трафик, зная позиции сайта по ним? Нет! Ведь, мы не знаем CTR сниппета, который может варьироваться в довольно большом диапазоне.

Более того, поскольку алгоритмы поисковых систем стали в разы сложнее, мы не можем предсказать, будет ли страница двигаться по запросу или нет.

Почему традиционный подход хорошо работал раньше:

· Перед оптимизатором стояла задача добиться определенных позиций по нескольким запросам. Привлечение целевого трафика на сайт было побочной задачей, по которой результат работы не оценивался.

· СЯ были меньше, и оптимизатор мог потратить время на анализ каждого запроса и с высокой точностью оценить необходимые ресурсы для его продвижения.

· Поисковые системы были проще и поэтому предсказуемыми.

Другими словами, традиционный подход хорошо работал, когда продвижение было ориентировано на позиции, а не на трафик. Сегодня, когда у нас поменялась цель самого продвижения, значительно возросло СЯ и появилось больше конкурентов, почему бы не поискать новые подходы?

Эмпирический подход

Есть два метода исследований: теоретический и эмпирический. Теоретический метод использует логические заключения, эмпирический — результаты экспериментов. Например, соцопрос - это эмпирическое исследование. Решение задачи по физики — теоретическое.

В науке и инженерном деле практически везде, где это возможно, предпочитают использовать эмпирический метод или подтверждать результаты теоретического исследования эмпирически.

Теоретический метод пытается предсказать что-то, основываясь на каких-то правилах, законах или логических заключениях. Эмпирический метод трактует результаты экспериментов. Описанный ранее метод был теоретическим: мы, основываясь на простых умозаключениях и на несвязанной с нашим сайтом статистике (WordStat), пытались оценить конкурентность и/или трафик, который мы можем получить по каждому из запросов.

Несмотря на сложное название, эмпирический метод в разы проще традиционного. Он очень хорошо автоматизируется и не парсит никакие внешние источники. Некоторые элементы этого метода уже давно использует ряд вебмастеров.

Смысл этого подхода в том, что мы продвигаем запросы, по которым на сайт приходят пользователи. Причем, чем больше пользователей к нам приходят по конкретному запросу, тем больше ресурсов мы тратим на его продвижение.

Чтобы понять, как это действует, нужно рассмотреть простой пример.

У нас есть сайт и три запроса:

· По первому запросу сайт находится на второй странице выдачи и по нему идут переходы. Мы закупаемся ссылками по этому запросу.

· По второму запросу мы уже давно на первой позиции, но почему-то переходов по нему почти нет. Мы снимаем все ссылки по этому запросу.

· Есть третий запрос. По нему сайт находится на 105 позиции уже три месяца и почему-то не растет, естественно, переходов по тоже нему нет. Мы снимаем ссылки по этому запросу.

Через два месяца:

· По первому запросу мы выходим в Топ-3 выдачи поисковиков, что увеличивает трафик в несколько раз.

· По второму и третьему вылетаем из выдачи, но на трафике это не сказывается, поскольку по ним переходов все равно не было.

· Ссылочный бюджет остался на том же уровне, поскольку по 2 и 3 запросу мы убрали ссылки и на эти деньги купили ссылок для первого запроса.

· В итоге, мы в несколько раз увеличили трафик при том же бюджете.

Самая простая реализация этого метода: импортировать данные о переходах из Google Analitics или из статистики LiveInternet и закупать ссылки пропорционально числу переходов.

Однако кроме покупных ссылок в нашем распоряжении есть и другие ресурсы, например, внутреннее ссылочное или перераспределение веса на страницах сайта, альты картинок и прочее.

Существуют и программы для работы по этому методу. Например, TrafficWeb, который парсит Google Analytics и статистику LiveInternet. По этим данным можно формировать проект для SAPE и ссылочных агрегаторов. Но есть и полностью автоматические решения, например, HTracer, который не только создает проект для SAPE, но еще и занимается внутренней оптимизацией сайта. Некоторые другие автоматические системы внутренней оптимизации (например, скрипт Хортицы) также используют элементы эмпирического продвижения, расширяя СЯ благодаря переходам на сайт с поисковиков.

Эмпирический подход составления СЯ тоже не идеален, но он лишен всех вышеописанных недостатков:

· Здесь мы имеем полную картину для запросов: словоформы, порядок слов (в некоторых системах статистики еще и знаки препинания, и регистр букв).

· Нет результатов SEO-прессинга.

· Кликабельность сниппета включена в число переходов.

· Мы продвигаем только те запросы, которые продвигаются.

Описанный метод имеет и свои недостатки, которые легко исправить, немного усложнив его.

· Например, сайта нет в выдаче по запросу «ноутбуки в москве», по этому запросу у нас нет переходов и, следовательно, у нас нет этого запроса в СЯ.

Однако, если слова «ноутбуки в москве» встречаются на какой-то из страниц сайта, то почти наверняка, эта страница находится в выдаче какой-нибудь из поисковых систем по какому-либо из уточнений этого запроса (например, по запросу «купить ноутбуки в Москве»).

Продвижение по этому подзапросу само по себе улучшит позиции и основного запроса, и по нему пойдут переходы. Если мы будет уточнять СЯ каждый месяц, то при следующем уточнении семантического ядра мы начнем продвигать и основной запрос в чистом виде.

Через несколько итераций сайт по основному запросу войдет в ТОП выдачи, если это, конечно, возможно при доступных ресурсах.

· Если запрос уже на первом месте, то эмпирический метод будет тратить ресурсы на его продвижение в существенно больших объемах, чем необходимо для его поддержания на первой позиции. Эту проблему можно решить отслеживанием позиций.

· Может появиться «левый» трафик. Например, на сайте, продающем ноутбуки, может появиться трафик по запросу «драйвера для ноутбуков». Однако он появится только в том случае, если на странице есть слово «драйвера». Но даже в этом случае общий процент такого трафика будет незначительным, ведь пользователи читают, что в сниппетах написано. Более того, процент совершено «непродающих» уточнений «продающих» запросов незначительный.

· Поскольку конкуренция в информационных запросах меньше, чем в коммерческих, эмпирическое СЯ будет содержать в основном информационные запросы, что снизит показатель конверсии для интернет-магазинов. Однако мы можем увеличить вес запросов, содержащих слова «купить», «цены» и подобные. Также можно через Google Analitics отслеживать конверсии и придавать высококонвертируемым запросам больший вес. В принципе, нет ничего страшного в том, что мы привлечем трафик по информационным запросам — с них ведь тоже идут конверсии.

С другой стороны у этого подхода есть и реальные недостатки:

· На новом сайте этим подходом невозможно воспользоваться. В этом случае можно использовать традиционный подход как первичное приближение.

· Увеличивается время продвижения. Эмпирический метод уже через месяц приносит первые плоды. Однако, чтобы СЯ стало более или менее оптимальным нужно около полугода.

· Этот метод не годится для продвижения по высококонкурентным запросам, он их будет обходить стороной.

Однако, у ЭМ есть и свои неявные плюсы:

· «Эмпирика» хорошо «партизанит». Если у вас бюджет в разы ниже, чем у конкурентов, то этот метод оптимально его распределит, отсеяв запросы, которые при таком бюджете продвигать нерационально или невозможно. «Увидев» хороший слабоконкурентный запрос, он быстро его возьмет в его оборот.

· По этой же причине эмпирический метод намного лучше традиционного распределяет внутренние ресурсы сайта, поскольку их явно не хватит, чтобы продвинуться по всем запросам в большинстве тематик.

· ЭМ может найти запросы, которые вы упустите при создании СЯ традиционным методом.

· ЭМ не рискует ресурсами, пытаясь наобум продвинуть запрос. Он итерационно увеличивает ресурсы по мере увеличения трафика. Если трафик перестал увеличиваться, то он перестает увеличивать ресурсы.

· СЯ можно составить полностью автоматически, не требуя от пользователя никакого участия.

Но ничто не мешает пользоваться этими методами одновременно, учитывая слабые и сильные стороны каждого из них.

Андрей Белоусов, разработчик
3
Создание эксклюзивных сайтов, юзибилити анализ и бесплатный анализ под запросы основных поисковых машин
Контактная информация :
тел. +7(98I) 7608865

Написать письмо на e-mail
icq 415547094  romverрейтинг на mail.ru сайта romverinbox.ru
© 1997 - 2024 romver.ru

Полная карта сайта Display Pagerank